Math 25 Fall 2017 Lecture 7

Ch. 7 Analytic Geometry
You should know Conic Sections

find equation of a circle that has the center (h, k) with radius r.

$$
r=\sqrt{(x-h)^{2}+(y-k)^{2}}
$$

Square both sides

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

find center and radius of the Circle

$$
\begin{aligned}
& x^{2}+y^{2}-6 x+8 y+9=0 \\
& x^{2}-6 x+9+y^{2}+8 y+16=-9+9+16 \\
& (x-3)^{2}+(y+4)^{2}=16
\end{aligned}
$$

Center $(3,-4)$
Radius 4

$$
\begin{aligned}
& D:[-1,7] \\
& R:[-8,0]
\end{aligned}
$$

Distance from V_{2} to F_{1} is $C-(-a)=C+a$ Distance from $V_{2} t_{0} F_{2}$ is $-C-(-a)=-C+a$ Sum of these two distances is $2 a$

By definition of Ellipse,

$$
\begin{aligned}
& d_{1}+d_{2}=2 a \\
& \sqrt{(x-c)^{2}+y^{2}}+\sqrt{(x+c)^{2}+y^{2}}=2 a \\
& \sqrt{(x-c)^{2}+y^{2}}=2 a-\sqrt{(x+c)^{2}+y^{2}}
\end{aligned}
$$

Square both sides, $\quad(A-B)^{2}=A^{2}-2 A B+B^{2}$

$$
\begin{aligned}
& \text { Square both sides, } \\
& (x-c)^{2}+y^{2}=4 a^{2}-4 a \sqrt{(x+c)^{2}+y^{2}}+(x+c)^{2}+y^{2} \\
& x^{2}-2 x c+x^{2}+y^{2}=4 a^{2}-4 a \sqrt{(x+c)^{2}+y^{2}}+x^{2}+2 x+c-x^{2}+y^{2} \\
& -2 x c-4 a^{2}-2 x c=-4 a \sqrt{(x+c)^{2}+y^{2}}
\end{aligned}
$$

$$
-4 x c-4 a^{2}=-4 a \sqrt{(x+c)^{2}+y^{2}}
$$

Divide by -4

$$
x c+a^{2}=a \sqrt{(x+c)^{2}+y^{2}}
$$

$$
\begin{aligned}
& \text { Square both sides } \\
& \left(x c+a^{2}\right)^{2}=\left(a \sqrt{(x+c)^{2}+y^{2}}\right)^{2} \\
& x^{2} c^{2}+2 a^{2} c x+a^{4}=a^{2}\left[(x+c)^{2}+y^{2}\right] \\
& \left(x^{2} c^{2}+2 a^{2} c x+a^{4}\right)=a^{2} x^{2}+2 a^{2} c x+a^{2} c^{2}+a^{2} y^{2} \\
& a^{2} x^{2}+a^{2} c^{2}+a^{2} y^{2}-x^{2} c^{2}-a^{4}=0 \\
& \left(a^{2}-c^{2}\right) x^{2}+a^{2} y^{2}=a^{4}-a^{2} c^{2}
\end{aligned}
$$

$$
\left(a^{2}-c^{2}\right) x^{2}+a^{2} y^{2}=a^{2}\left(a^{2}-c^{2}\right)
$$

To make our life easier, Let $b^{2}=a^{2}-c^{2}$

$$
b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}
$$

Divide everything by $a^{2} b^{2}$

$$
\begin{aligned}
& \frac{b^{2} x^{2}}{a^{2} b^{2}}+\frac{a^{2} y^{2}}{a^{2} b^{2}}=\frac{a^{2} b^{2}}{a^{2} b^{2}}, \text { Reduce } \\
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad a>b>0 \quad c^{2}=a^{2}-b^{2}
\end{aligned}
$$

Consider

$$
\frac{x^{2}}{25}+\frac{y^{2}}{9}=1
$$

Ellipse centered at (0,0)

$$
\begin{array}{ll}
a^{2}=25 & a=5 \\
b^{2}=9 & b=3
\end{array}
$$

$$
c^{2}=a^{2}-b^{2}
$$

Let $x=0 \quad \frac{y^{2}}{9}=1 \rightarrow y= \pm 3$

$$
=25-9
$$

$$
c^{2}=16
$$

Two fixed points

$$
C= \pm 4
$$ foci (plural focus)

Majoraxis $(4,0),(-4,0)$
$F_{1} \quad F_{2}$

$$
V_{1} \dot{\varepsilon} V_{2}
$$

Two points at the end of major axis are called vertices (5,0$),(-5,0)$

Consider the ellipse below

Center at (0,0)

$$
\begin{aligned}
& a^{2}=100 \rightarrow a=10 \\
& b^{2}=36 \rightarrow b=6 \\
& c^{2}=a^{2}-b^{2}=100-36=64 \\
& \rightarrow \rightarrow c=8 \\
& e=\frac{c}{a}=\frac{8}{10}=\frac{4}{5}
\end{aligned}
$$

I like to move the last ellipse 3 units to the right, and 2 units down.

$$
\begin{aligned}
& \frac{(y+2)^{2}}{100}+\frac{(x-3)^{2}}{36}=1 \\
& (0,8) \rightarrow(3,6) \\
& (0,10) \rightarrow(3,8) \\
& (0,-8) \rightarrow(3,-10) \\
& (0,-10) \rightarrow(3,-12)
\end{aligned}
$$

Ellipse centered at (h, k)

$$
\begin{array}{ll}
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1 & \begin{array}{ll}
& a>b>0 \\
& \text { Major axis } \rightarrow \text { Horizontal } \\
\frac{(y-k)^{2}}{a^{2}}+\frac{(x-h)^{2}}{b^{2}}=1 & \text { Major axis } \rightarrow \text { Vertical }
\end{array}
\end{array}
$$

we can adjust accordingly vertices $\dot{\varepsilon}$ foci.

Do a Complete graph:

$$
x^{2}+9(y+1)^{2}=81
$$

Divide by 81 \& reduce, why? R R , $=1$

$$
\frac{x^{2}}{81}+\frac{(y+1)^{2}}{9}=1
$$

$$
\text { Center }(0,-1)
$$

$$
a^{2}=81 \quad a=9
$$

Major axis \rightarrow Horizontal

$$
b^{2}=9
$$

$$
b=3
$$

$$
\begin{aligned}
c^{2}=a^{2}-b^{2} & =81-9=72 \\
c & =\sqrt{72}=6 \sqrt{2} \\
\text { 1) } & e=\frac{c}{a}=\frac{6 \sqrt{2}}{9}=\frac{2 \sqrt{2}}{3}
\end{aligned}
$$

Consider $3 x^{2}+2 y^{2}-30 x-4 y+59=0$

1) Rewrite this eqn in stand. form of an ellipse $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$

$$
\frac{(y-k)^{2}}{a^{2}}+\frac{(x-h)^{2}}{b^{2}}=1
$$

$$
3 x^{2}-30 x \quad+2 y^{2}-4 y \quad=-59
$$

$$
3\left(x^{2}-10 x+25\right)+2\left(y^{2}-2 y+1\right)=-59+75+2
$$

$$
3(x-5)^{2}+2(y-1)^{2}=18
$$

Make RHS equal to 1 by dividing by 18.

Find an equation of ellipse in stand. Form with Vertices $(-8,4)$ ह $(2,4)$ and foci $(-3-\sqrt{21}, 4) \varepsilon(-3+\sqrt{21}, 4)$.

$$
\text { Center (} h, k \text {) }
$$

focus to center. $C=\sqrt{21}$

$$
\begin{aligned}
& c^{2}=a^{2}-b^{2} \\
& (\sqrt{21})^{2}=5^{2}-b^{2} \quad b^{2}=4 \quad b=2 \quad \frac{(x+3)^{2}}{25}+\frac{(y-4)^{2}}{4}=1
\end{aligned}
$$

Recall from Interm. Algebra

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \\
& \frac{x^{2}}{9}-\frac{y^{2}}{16}=1
\end{aligned}
$$

$$
d\left(V_{2}, \dot{\varepsilon}, F_{1}\right)=C+a
$$

\Rightarrow difference of these two

$$
d\left(V_{2} \dot{\varepsilon}, F_{2}\right) c-a
$$

$$
\text { distances } \Rightarrow(c+a)-(c-a)=2 a
$$

Definition of hyperbola:
The set of all points (x, y) such that the difference of distances from two fixed points (foci) are always the same.

$$
\begin{aligned}
& \sqrt{(x+c)^{2}+(y-0)^{2}}-\sqrt{(x-c)^{2}+y^{2}}=2 a \\
& \sqrt{(x+c)^{2}+y^{2}}=\sqrt{(x-c)^{2}+y^{2}}+2 a
\end{aligned}
$$

Square both sides using $(A+B)^{2}=$

$$
\begin{aligned}
& (x+c)^{2}+y^{2}=(x-c)^{2}+y^{2}+4 a \sqrt{(x-c)^{2}+y^{2}}+4 a^{2} \\
& x^{2}+2 x c+y^{2}+y^{2}=x^{2}-2 x c+x^{2}+y^{2}+4 a \sqrt{(x-c)^{2}+y^{2}}+4 a^{2} \\
& 2 x c+2 x c-4 a^{2}=4 a \sqrt{(x-c)^{2}+y^{2}} \\
& 4 x c-4 a^{2}=4 a \sqrt{(x-c)^{2}+y^{2}} \quad \text { Divide by } \\
& 4 \text { to reduce }
\end{aligned}
$$

$$
x c-a^{2}=a \sqrt{(x-c)^{2}+y^{2}}
$$

Square both sides again,

$$
\begin{aligned}
& \left(x c-a^{2}\right)^{2}=\left(a \sqrt{(x-c)^{2}+y^{2}}\right)^{2} \\
& x^{2} c^{2}-2 c a^{2} x+a^{4}=a^{2}\left((x-c)^{2}+y^{2}\right) \\
& x^{2} c^{2}-2 c a^{2} x+a^{4}=a^{2} x^{2}-2 c a^{2} x+a^{2} c^{2}+a^{2} y^{2} \\
& x^{2} c^{2}-a^{2} x^{2}-a^{2} y^{2}=a^{2} c^{2}-a^{4} \quad\left\{\begin{array}{l}
a, b>0 \\
\left(c^{2}-a^{2}\right) x^{2}-a^{2} y^{2}=a^{2}\left(c^{2}-a^{2}\right) \\
\text { Let } b^{2}=c^{2}-a^{2}
\end{array}\right.
\end{aligned}
$$

$$
b^{2} x^{2}-a^{2} y^{2}=a^{2} b^{2} \quad \text { where }
$$

Divide by $a^{2} b^{2}$

$$
b^{2}=c^{2}-a^{2}
$$

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1, \quad c^{2}=a^{2}+b^{2}
$$

$$
16(x-4)^{2}-9(y+2)^{2}=-144
$$

Make RHS 1 : Divide by -144

$$
-\frac{(x-4)^{2}}{9}+\frac{(y+2)^{2}}{16}=1 \quad \frac{(y+2)^{2}}{16}-\frac{(x-4)^{2}}{9}=1
$$

Hy perbola, center $(4,-2)$, opens up/down

$$
\begin{array}{lll}
a^{2}=16 & b^{2}=9 & c^{2}=25 \\
a=4 & b=3 & c=5
\end{array}
$$

Vertices a from the

$$
\begin{aligned}
(4,-2) & \rightarrow(4,2) V_{1} \\
& \rightarrow(4,-6) V_{2}
\end{aligned}
$$

Foci are C units from center

$$
\begin{aligned}
(4,-2) & \rightarrow(4,3) \\
& \rightarrow(4,-7)
\end{aligned}
$$

Consider $-5 x^{2}+9 y^{2}+20 x-72 y+79=0$

1) write in stand. form of the hyperbola.

$$
\begin{aligned}
& \frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1 \\
& \frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1 \\
&-5 x^{2}+20 x-72 y=-79 \\
&-5\left(x^{2}-4 x+4\right)+9\left(y^{2}-8 y+16\right)=-79-20+ \\
&-5(x-2)^{2}+9(y-4)^{2}=45
\end{aligned}
$$

Divide by 45 to make R HS $=1$

$$
\frac{(y-4)^{2}}{5}-\frac{(x-2)^{2}}{9}=1
$$

Center (2,4)

$$
\begin{array}{lll}
a^{2}=5 \quad b^{2}=9 \quad c^{2}=5+9=14 \\
a=\sqrt{5} \quad b=3 \quad c=\sqrt{14} \\
(2,4) \rightarrow & v_{1}(2,4+\sqrt{55}) \\
& v_{2}(2,4-\sqrt{5}) \\
(2,4) \rightarrow & F_{1}(2,4+\sqrt{14}) \\
& F_{2}(2,4-\sqrt{14})
\end{array}
$$

Find eqn of a hyperbola in standard form with vertices $(-3,0),(-3,8)$ and foci $(-3,4+\sqrt{21}),(-3,4-\sqrt{21})$. Draw too. Center $(-3,4)$
vertices are a units. from the center $a=4$
foci are C units from the center

$$
\begin{array}{r}
C=\sqrt{21} \\
\frac{(y-4)^{2}}{16}-\frac{(x+3)^{2}}{5}=1
\end{array}
$$

Conic Sections

1) Circle
2) Ellipse
3) Hyperbola
4) Parabola

Parabola is the Set of all points (x, y) that are same distance from a fixed point and a fixed line.

$$
\begin{aligned}
& \text { and a Mixed line. } \\
& d_{1}=\sqrt{(x-0)^{2}+(y-p)^{2}} \\
& \sqrt{x^{2}+(y-p)^{2}}=y+P \\
& \left.x^{2}+(y-p)^{2}=(y+p)^{2}\right) \quad \rightarrow x^{2}+y^{2}-2 y p+p^{2}=y^{2}+2 y p+p^{2} \\
& d^{2}=4 p y
\end{aligned}
$$

Graph $x^{2}=12 y$

opens horizontally $\rightarrow y^{2}$
P indicates open up, down, right left

$$
P>0 \quad P<0 \quad P>0 \quad P<0
$$

